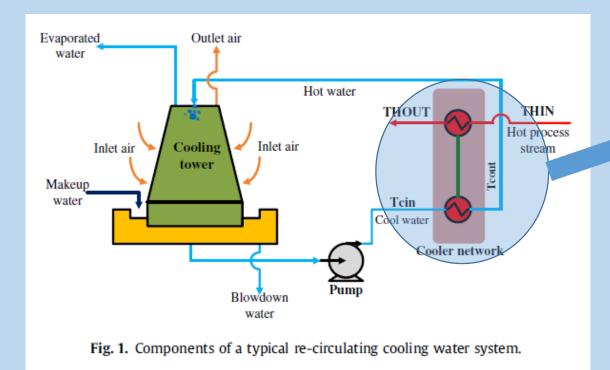


Cooling Water Systems Featuring Heat Exchanger Design and Variable Outlet Temperature

Ana Lucia L. Levy^a, Miguel Bagajewicz^b, André L.H. Costa^a

(a)Universidade do Estado do Rio de Janeiro (b) University of Oklahoma


December 6, 2019

Introduction

Water cooling system

pi16 pi15 pi14 pi13

pi6 pi5 pi10 pi12

he1 he2 he3 he4

pi1 pi3 pi4 pi7 pi8

- In our case, we only solve this part of the system
- We determine piping diameters (lengths are fixed) and full cooler geometry

Castro et al, 2013.

Introduction

Our previous model (Levy et al, 2019) aimed at designing the piping and the exchangers simultaneously:

- Using the Kern model for heat exchangers
- Using Hazen Williams model for pressure drop in pipes.
- Outlet Temperature of exchangers fixed.

MILP - SIMULTANEOUS DESIGN

- Results for fixed cooler outlet temperature (4 Coolers)

cost (\$/year)	simultan eous design
pump cost	1455.21
heat exchanger cost	48350.33
pipe cost	15606.02
operational cost	20739.07
total cost	86150.64

MODEL EXTENSION

- Variable temperature at the outlet of each cooler
- Variable temperature returning to the cooling tower inside a small window

THIS PROBLEM PRESENTED DIFFERENT CHALLENGES We now show different attempts to solve it

MILP – DISCRETE TEMPERATURE REPRESENTATION

Temperature of the water flowrates of each heat exchanger - discrete variables.

- Range of cooling water return temperature.
- Some heat exchangers temperatures combinations selected return temperature range - "if" loop prior to optimization.
- The optimization is performed in one step.

MILP – DISCRETE TEMPERATURE REPRESENTATION

Results

		Temperature of the water flow rates of each	Reduced	1	3019	3004	7965
	AAU D. DIGGDETE	 	discrete variables and an	5			
	MILP – DISCRETE TEMPERATURE- 1 STEP	allowable range of cooling water return temperature.	Complete 3T options	1	739467	739452	2239949
		temperature.		5			
		Heat exchanger model -					
L		yrow					

Model	Description	Options	CPLEX
MILP – DISCRETE	Temperature of the water flow rates of each heat exchanger as discrete variables and an allowable range of	Reduced 3T options	Converge
TEMPERATURE- 1 STEP	cooling water return temperature.	Complete 3T options	Converge*1
	Heat exchanger model - yrow		

MINLP – with auxiliary variables

- One binary (yrow) to represent each possible cooler geometry (developed by Gonçalves et al.; 2017)
- Temperature of the water flowrates of each heat exchanger is a continuous variable
- Permissible range of cooling water return temperature.
- Hazen-williams Equation auxiliary variable

MINLP – with auxiliary variables

Results

Model	Description	Options	Number of HC	Number of variables	Number of binary variables	Number of equations
	Temperature of the water flow rates of each heat exchanger as continuous variables and there is a permissible range of cooling water return temperature.	Dadwaad	1	8894	1501	26261
		Reduced	5	45674	7461	137689
MINLP WITH LINEARIZATIONS			1	2217968	369725	7044317
	Hydraulic model – linearizations	Complete	5			
	Heat exchanger model - yrow					

MINLP – with auxiliary variables

Model	Description	Options	CPLEX	Baron
MINLP WITH	Temperature of the water flow rates of each heat exchanger as continuous variables and there is a permissible range of cooling water return	Reduced		Converge
LINEARIZATIONS	temperature. Hydraulic model – linearizations Heat exchanger model - yrow	Complete	-	Interrupted after more than 6 h – (UERJ)* ²

MINLP – with exchanger candidate binary representation (yrow)

hydraulic model – no auxiliary variables

Model	Description	Options	Number of HC	Number of variables	Number of binary variables	Number of equations
MINLP WITHOUT	Hydraulic model – no	Reduced	1	2982	1501	2635
LINEARIZATIONS IN THE	linearization	Reduced	5	45674	7461	137689
HYDRAULIC MODEL			1	739348	369725	1310818
	Heat exchanger model - yrow	Complete	5			

MINLP – with exchanger candidate binary representation (yrow)

Model	Description	Options	CPLEX	Baron	Antigone	Initial guess	Sbb
MINLP WITHOUT	Hydraulic model – no linearization	Reduced			Converge	Equal to	Converge
LINEARIZATIONS IN THE HYDRAULIC MODEL	Heat exchanger model - yrow	Complete	-	-	Interrupted after more than 24 h – (UERJ)	optimal point of MILP	Interrupted after more than 24 h – (UERJ)

MINLP -

- Heat exchanger model original format.
- Hydraulic model original format.

MINLP -

Model	Description	Options	Number of HC	Number of variables	Number of binary variables	Number of equations
A AIAH D WATTHOUT	Heat exchanger model- without yrow or any	Reduced	1	87	63	61
LINEARIZATIONS IN THE	other linearization	Reduced -	5	359	271	245
HYDRAULIC MODEL AND IN THE HEAT EXCHANGER MODEL (WITHOUT YROW), AND WITH F INSIDE OF Q	The LMTD correction factor equation (F) was included in the heat	Complete	1	212	188	61
EQUATION	transfer rate equation. Hydraulic model – no linearization	Complete	5	880	792	245

MINLP -

	Model	Description	Options	CPLEX	Baron	Antigone	Initial guess	Sbb	Dicopt					
	MINLP WITHOUT LINEARIZATIONS IN THE HYDRAULIC MODEL AND IN THE HEAT EXCHANGER MODEL (WITHOUT YROW), AND WITH F INSIDE OF Q EQUATION	Reduced					Equal to optimal point of MILP	Converge quickly	Converge quickly					
				Converge	Interrupted after more than 24 h –	Without initial guess Bounds on all variables	locally infeasible	locally infeasible						
		Heat exchanger model- without yrow or any other linearization The LMTD correction	hout yrow or any her linearization			(UERJ)	Initial guess equal optimal point in 40°C Bounds on all variables*3	locally infeasible	locally infeasible					
		(WITHOUT YROW), included in the heat transfer rate equation		Complete			Equal to optimal point of MILP	converge	converge					
			te										Interrupted itself	Interrupted after more than 24h – (UERJ)
						(OEKI)	Initial guess equal optimal point in 40°C Bounds on all variables*3	Didn't do it, because of the results of "reduced options".	Didn't do it, because of the results of "reduced options".					

Current Approach: Set trimming, NLP and MILP tools

- We propose to use a set trimming step for the coolers individually
- We follow with a determination of the minimum flowrate for each exchanger candidate
- This lead to a large MILP where each exchanger candidate has its own flowrate.
- This large MILP does not fit in regular laptops and desktops
- We are testing Smart Enumeration.

Conclusions

- MILP model of cooling water systems, considering the Kern model for heat exchangers presents high number of variables, being a barrier for the software GAMS.
- The more nonlinear the models, the fewer the variables, but convergence problems appear.

 The next steps are set trimming and smart enumeration, along with the use of NLP to determine the minimum flowrate for each exchanger.